Page 1

Contents
General information, references
Grammar (shell syntax)
Patterns: globbing and qualifiers
Options
Options cont.; option aliases, single letter options
Expansion: basic forms, history, prompts
Expansion: variables: forms and flags
Shell variables: set by shell, used by shell
Test operators; numeric expressions
Completion: contexts, completers, tags
Completion cont.: tags cont, styles
Completion cont.: styles cont, utility functions
Zsh line editor (zle)

O 0 1N DN B~ W=

—_— = = =
W = O

Notes

The descriptions here are very brief. You will not be able to learn

shell syntax from them; see the various references below. In
particular the completion system is extremely rich and the

descriptions of its utility functions are the barest memory joggers.

The start and end of each section is aligned with page boundaries,

S0 you can print out only the parts you want to refer to.

References

Zsh manual: Supplied with the shell: should be installed in Unix

manual page and info formats. Texinfo generates PS or PDF;
available as separate doc bundle from same place as the shell.

http://zsh.sunsite.dk/: Site with much information

about zsh, including HTML manual and a more user-friendly
guide to the shell, as well as the FAQ.

Zsh wiki: http: //www.zshwiki.org/: Extensible zsh web

pages written by users.

From Bash to Z Shell: Conquering the Command Line, by
Oliver Kiddle, Jerry Peek and Peter Stephenson, Apress, ISBN 1
59059 376 6. Introduction to interactive use of Unix shells in

Zsh Reference Card

general in part 1, concentrating on bash and ash in parts 2 and 3.

The contents of the book are as follows; where noted with page
references to this card they expand on the brief hints here.

Part 1 (Introducing the Shell) contains the following chapters:

1 Introduction to Shells
2 Using Shell Features Together
3 More Shell Features

(c.f. page 2)

Part 2 (Using bash and zsh) contains the following chapters:

4 Entering and Editing the Command Line
(c.f. pages 6 and 13)
5 Starting the Shell
(c.f. pages 4 and 5)
6 More About Shell History
(c.f. pages 6 and 8)
7 Prompts
(c.f. page 6)
8 Files and Directories
(c.f. page 9)
9 Pattern Matching
(c.f. page 3)
10 Completion
(c.f pages 10 through 12)
11 Jobs and Processes
(c.f. page 6)

Part3 (Extending the Shell) contains the following chapters:
12 Variables
(c.f. pages 7 and 8)

13 Scripting and Functions
(c.f. page 2)

14 Writing Editor Commands
(c.f page 13)

15 Writing Completion Functions

(c.f. pages 10 through 12)

Version 4.2

http://www.sunsite.dk/
http://www.zshwiki.org/

Page 2

Grammar
List is any sequence of Sub1ists (including just one)
separated by ; or newline. ; and newline are always
interchangeable except in ;.

Sublist is any sequence of pipelines (including just one)
connected by && or | |.

Pipeline is any sequence of simple commands connected by |.

Command is either a simple command (a command word)
followed optionally by word ... or one of the special commands
below.

Word is any text that produces a single word when expanded;
word ... is any number of these separated by whitespace.

Name is a shell identifier: an alphabetic character or _ followed
by any sequence of alphanumeric characters or _.

[...] indicates optional; dots on their own line mean any
number of repetitions of the line just above.

Bold text is to be typed literally.

Status “true” or “false” is determined by: for commands, the
return status; for pipelines the last command; for sublists the last
pipeline; for lists the last sublist that was executed.

sublistl && sublist2? [&& sublist3 ...]
Execute sublists until one is false.

sublistl || sublist2 [|| sublist2 ...]

Execute Sublists until one is true. Note strings of

&& sublists can contain | | sublists and vice versa; they are parsed
left to right.

commandl | command2 [| command3 ..]
Execute commandl, sending its output to the input of

Zsh Reference Card
command?, and so on (a pipeline).

if listil; then[;] listtl;
[elif l1isti2; then listt2; 1]

[else listt3; 1]

fi

If 1istil is true, execute 1isttl;elseif 11Sti2is true
execute 11Stt2; else execute 1istt3.

for name [in word ...]

do list;

done

Execute 11st with variable name set to each of word ... in turn
If in ... is omitted the positional parameters are used.

for name in word ...; { 1list }
foreach name (word ...) [;]
list;

end

Non-portable alternative forms.

while listw; do listd; done
While 1istwis true execute 1istd.

until Iistu; do listd; done
Non-portable: while 11stu is not true execute 1istd.

repeat numexp; do 1ist; done
repeat numexp sublist
Non-portable: repeat 1iSt or sublist numexp times.

case word in
[(] patternl[|pattern2...]) [;] 1list ;;

esac

Try matching word against every pattern in turn until success.
Execute the corresponding list. ;& instead of && means fall
through to next 1ist.

Version 4.2

case word {

[(] patternl[|pattern2...]) [;] list ;;
3

Non-portable alternative.

select name [in word ...];

do list;

done

Print menu of words, read a number, set name to selected word,
execute 11St until end of input. Portable but rare.

(1ist[;1)
Execute 11St in a subshell (a new process where nothing that
happens affects the current shell).

{1list[;]}
Execute 11St (no new process: simply separates list from what’s
around and can take redirections).

function nameword {[;] list[;] }

nameword () {[;]1 1ist[;] }

Define function named nameword, executes list when run;
running nameword word1 ... makes wordl ... available as $1
etc. in function body. 11st must end with [;] or newline for
portability. nameword can be repeated to define multiple
functions (rare, non-portable).

time [pipeline]
Report time for pipeline if given else totals for current shell.

[[condition 1]
Evaluate condition (see below), gives status true or false.

Page 3

Basic patterns:

?

[c
[A

<numl-num2>

lass]
class]

o ot
W

(p

(patl|pat2)

atl)

Pattern matching (globbing)

Any string

Any character

Any single character from class

Any single character not from class
Any number between numl1 and num2
<-num2> from 0; <numl1-> to infinity.
Directories to any level

Group patterns

patlor pat2 (any number of |’s)

Character classes may contain any character or the following
special patterns in any mix; literal — must be first; literal » must
not be first:

a-

[:

[
[
[
[
[
[
[
[
[
[
[
[

:alpha:
rascii:
:blank:
:cntrl:
:digit:
:graph:
:lower:
:print:
:punct:
: space:
:upper:
ixdigit:]

b
alnum:

e b b e b b b e d b hd e

A character in the range ato b

An alphanumeric character

An alphabetic character

A character in the ASCII character set
A space or tab

A control character

A decimal digit

A printable character other than whitespace
A lower case letter

A printable character

A punctuation character

Any whitespace character

An upper case letter

A hexadecimal digit

Extended patterns (option EXTENDED_GLOB must be set):
Apat

pa
pa
X#
X#

t1Apat2
tl~pat2

#

Anything that doesn’t match pat

Match pat1 then anything other than pat2

Anything matching pat1 but not pat2
Zero or more occurrences of element X
One or more occurrences of element X

Zsh Reference Card

KSH_GLOB operators (patterns may contain | for alternatives):
@(pat) Group patterns

*(pat) Zero or more occurrences of pat
+(pat) One or more occurrences of pat
?(pat) Zero or one occurrences of pat

1 (pat) Anything but the pattern pat

Globbing flags with EXTENDED_GLOB:

(#1) Match case insensitively

(#1) Lower case matches upper case

(#D) Match case sensitively

(#b) Parentheses set match, mbegin, mend
(#B) Parentheses no longer set arrays

(#m) Match in MATCH, MBEGIN, MEND
(D Don’t use MATCH etc.

(#anum) Match with num approximations

(#s) Match only at start of test string

(#e) Match only at end of test string
(#qexpr) expr is a a set of glob qualifiers (below)

Glob qualifiers (in parentheses after file name pattern):
Directory
F Non-empty directory; for empty use (/AF)
. Plain file
@ Symbolic link
Socket
Name pipe (FIFO)
Executable plain file

EL o]

R

Special file
b Block special file
Character special file

NI
(o]

Readable by owner (N.B. not current user)
Writeable by owner

Executable by owner

Readable by members of file’s group
Writeable by members of file’s group

H > X = H

+t LK X =X

fspec
estring

+cmd

ddev
1[-+]1num

U

G

uuid

ggid
a[Mwhms][-+]n
m[Mwhms][-+]n
c[Mwhms][-+]n
A

oz+A=

n
o[nLlamcd]
O[nLlamcd]
[num]
[numl, num2]
X

Version 4.2

Executable by members of file’s group
World readable

World writeable

World executable

Setuid

Setgid

Sticky bit

Has chmod-style permissions spec
Evaluation String returns true status
Same but cmd must be alphanumeric or _
Device number dev (major*256 + minor)
Link count is (less than, greater than) num
Owned by current effective UID

Owned by current effective GID

Owned by given uid (may be <name>)
Owned by given gid (may be <name>)
Access time in given units

Modification time in given units

Inode change time in given units

Negate following qualifiers

Toggle following links (first one turns on)
Mark directories

Mark directories, links, special files
Whole pattern expands to empty if no match
Leading dots may be matched

Sort numbers numerically

Order by given code (may repeat)

Order by reverse of given code

Select numth file in current order

Select numIth to numzth file (as arrays)
History modifier X; may have more

Time units are Month, week, hour, minute, second.
Order codes are name (default), size, link count, access time,
modification time, inode change time, directory depth.

Page 4

Options

Set options with setopt, unset with unsetopt. Asterisk
indicates on by default for native zsh.

*ALTASES
ALL_EXPORT

*ALWAYS_LAST_PROMPT

ALWAYS_TO_END
*APPEND_HISTORY
AUTO_CD
AUTO_CONTINUE
*AUTO_LIST
*AUTO_MENU
AUTO_NAME_DIRS
*AUTO_PARAM_KEYS
*AUTO_PARAM_SLASH
AUTO_PUSHD
*AUTO_REMOVE_SLASH
AUTO_RESUME
*BAD_PATTERN
*BANG_HIST
*BARE_GLOB_QUAL
BASH_AUTO_LIST
*BEEP

*BG_NICE
BRACE_CCL
BSD_ECHO
*CASE_GLOB
C_BASES
CDABLE_VARS
CHASE_DOTS
CHASE_LINKS
*CHECK_JOBS
*CLOBBER
COMPLETE_ALTASES
COMPLETE_IN_WORD
CORRECT

Expand aliases

Export all variables to environment
Completion lists after prompt

On completion go to end of word
History appends to existing file
Directory as command does cd
Jobs are continued when disowned
List ambiguous completions

Menu complete after two tabs
Variables always can be %~ abbrevs
Magic completion for parameters
$dirname completes with /

cd uses directory stack too

Trailing / in completion removed
cmd can resume job %cmd

Errors on pattern syntax; else literal
! style history allowed

Glob qualifiers with bare parens
List completions on second tab
Beep on all errors

Background jobs at lower priority
X{ab} expands to Xa Xb

No echo escapes unles —e given
Glob case sensitively

Output hexadecimal with 0x

cd var works if $ varis directory
in cd

Resolve symbolic links in cd

Check jobs before exiting shell

Resolve ..

Allow redirections to overwrite
Completion uses unexpanded aliases
Completion works inside words
Correct spelling of commands

Zsh Reference Card

CORRECT_ALL
CSH_JUNKIE_HISTORY
CSH_JUNKIE_LOOPS
CSH_JUNKIE_QUOTES
CSH_NULLCMD
CSH_NULL_GLOB
DVORAK

EMACS

*EQUALS

ERR_EXIT
ERR_RETURN
*EVAL_LINE_NO
*EXEC
EXTENDED_GLOB
EXTENDED_HISTORY
*FLOW_CONTROL
*FUNCTION_ARGZERO
*GLOB
*GLOBAL_EXPORT
*GLOBAL_RCS
GLOB_ASSIGN
GLOB_COMPLETE
GLOB_DOTS
GLOB_SUBST
*HASH_CMDS
*HASH_DIRS
*HASH_LIST_ALL
HIST_ALLOW_CLOBBER
*HIST_BEEP
HIST_EXPIRE_DUPS_
FIRST
HIST_FIND_NO_DUPS
HIST_IGNORE_ALL_
DUPS
HIST_IGNORE_DUPS
HIST_IGNORE_SPACE
HIST_NO_FUNCTIONS

Correct spelling of all arguments
Single ! for previous command
1list; endfordo...done

No newlines in quotes
Redirections with no commands fail
One glob must succeed, failures go
Dvorak keyboard for correction
Same as bindkey -e

Expand =cmd to /path/to/cmd
Exit shell on non-zero status
Return from function instead
$LINENO counts inside eval code
Execute commands

See globbing section above
Timestamps saved to history file
Use AS/AQ style flow control

$0 in function is its name

Use globbing as described above
Exported variables not made local
Execute /etc/z* files

var=* expands, assigns array
Patterns are active in completion
Patterns may match leading dots
Substituted characters may glob
Store command location for speed
Store for all commands in dir

Store all on first completion

On clobber error, up arrow to retry
Beep when going beyond history
Duplicate history entries lost first

History search finds once only
Remove all earlier duplicate lines

Remove duplicate of previous line
Don’t store lines starting with space
Don’t store shell functions

HIST_NO_STORE
HIST_REDUCE_BLANKS
HIST_SAVE_NO_DUPS
HIST_VERIFY

*HUP
IGNORE_BRACES
IGNORE_EOF
INC_APPEND_HISTORY
INTERACTIVE
INTERACTIVE_
COMMENTS
KSH_ARRAYS
KSH_AUTOLOAD
KSH_GLOB
KSH_OPTION_PRINT
KSH_TYPESET
*LIST_AMBIGUOUS
*LIST_BEEP
LIST_PACKED
LIST_ROWS_FIRST
*LIST_TYPES
LOCAL_OPTIONS
LOCAL_TRAPS

LOGIN
LONG_LIST_JOBS
MAGIC_EQUAL_SUBST
MATIL_WARNING
MARK_DIRS
MENU_COMPLETE
MONITOR

*MULTIOS

*NOMATCH

*NOTIFY
NULL_GLOB
NUMERIC_GLOB_SORT
OCTAL_ZEROES

Version 4.2

Don’t store history and fc
Trim multiple insgnificant blanks
Remove duplicates when saving
Show ! history line for editing
Send SIGHUP to proceses on exit
Don’t use {a, b} expansions
Ignore AD (stty eof char)
Save history line by line

Shell is interactive

on interactive line for comment

Indexing etc. for arrays like ksh
Function file includes function name
See globbing above

Show all options plus on or off

No word splitting in typeset etc.
List completions when ambiguous
Beep on ambiguous completion
More compact completion lists

List completions across

File types listed in completion
Options reset on function return
Traps reset on function return

Shell is login shell

More verbose listing of jobs

Special expansion after all =

Warn if mail file timestamp changed
Append / to globbed directories
Cycle through ambiguous matches
Shell has job control enabled
Multiple redirections are special
Error if glob fails to match
Asynchronous job control messages
Failed globs are removed from line
Numbers in globs sorted numerically
Leading zeros in integers force octal

Page 5 Zsh Reference Card Version 4.2

OVERSTRIKE Start line editor in overstrike mode ~VERBOSE Output commands to be executed ~ —L SUN_KEYBOARD_HACK
PATH_DIRS dir/cmd can be found in $PATH VI Same as bindkey -v -M SINGLE_LINE_ZLE
POSIX_BUILTINS Illogical command behaviour XTRACE Show trace of execution with $PS4 ~N AUTO_PUSHD
PRINT_EIGHT_BIT Print all 8-bit characters directly ZLE Line editor used to input lines :g ggREESXEQL% ARAM
PRINT_EXIT_VALUE Return status printed unless zero . -Q PAEH_DIRS_
PRIVILEGED Special behaviour on setuid/setgid ~ Option aliases (native zsh on right): -R LONG_LIST_JOBS
PROMPT_BANG Special treatment of ! in prompt ~ BRACE_EXPAND NO_IGNORE_BRACES s REC_EXACT
*PROMPT_CR Prompt always at start of line DOT_GLOE GLOB_DOTS -T CDABLE_VARS
*PROMPT_PERCENT % escapes expanded in prompts HASH_ALL Sl -U MAIL_WARNING
HIST_APPEND APPEND_HISTORY
PROMPT_SUBST $ expansion etc. in prompts HIST EXPAND BANG_HIST _x ZSEgEgBEﬂs,EﬁgR
PUSHD_IGNORE_DUPS Don’t push dir multiply on stack LOG NO_HIST_NO_FUNCTIONS :X LIST TYPES
PUSHD_MINUS Reverse sense of — and + in pushd MAIL_WARN MAIL_WARNING -y MENU_COMPLETE
PUSHD_SILENT No non-err messages from pushd ONE_CMD SINGLE_COMMAND -7 7LE -
PUSHD_TO_HOME pushd with no argument goes to ~ PHYSICAL CHASE_LINKS -a ALL_EXPORT
RC_EXPAND_PARAM X$array gives Xelt] Xel2 ete. ~ EROMPT_VARS LA D —e ERR_EXIT
RC_QUOTES ' inside single quotes gives " ERLAL L] -f NO_RCS
glequoles TRACK_ALL HASH_CMDS
Ea un staup s i HIST_TGNOREDUPS
ﬁg}i}%ggb lsiialclthc omplft:t?otrl (;natchle:rege good Single letter options (used with set as well as setopt): -i INTEEACTIVE_
ell has restricted capabilities =
RM_STAR_SILENT Don’t warn on rm * _(1) Sg?ﬁ?gxn_vum _l{ II_gz};ﬁACTIVE_COMMENTS
RM_STAR_WAIT Wait before asking if yrm * is OK -2 NO_BAD_PATTERN -m MONITOR
SHARE_HISTORY Save and restore history per line -3 NO_NO_MATCH -n NO_EXEC
SH_FILE_EXPANSION ~ etc. expansion done early -4 GLOB_DOTS -p PRIVILEGED
SH_GLOB Disables non-extended zsh globs _2 ggT::]igE -r gﬁi;f{égg?g
:HIN_STDIN Shell input comes.fronll Stdlr.l _7 IGNORE_EOF _: SINGEE_COMMAND
H_NULL_CMD Commandless redirections like sh 3 MARK_DIRS B NO_UNSET
. u
SH_OPTION_LETTERS Single letter options are like sh -9 AUTO_LIST . VERBOSE
*SHORT_LOOPS for words; 1ist works -B NO_BEEP o CHASE_LINKS
SH_WORD_SPLIT Split non-array variables yuckily -C NO_CLOBBER -x XTRACE
SINGLE_COMMAND Execute one command then exit -D PUSHD_TO_HOME -y SH_WORD_SPLIT
SINGLE_LINE_ZLE Line editing on single line (bad tty) —E PUSHD_STLENT Note also —A to set arrays, —b to end option processing, —C to
SUN_KEYBOARD_HACK Unmatched " at end of line ignored F NO_GLOB pass a single command, —m to set pattern argument, —0 to specify
TRANSIENT_RPROMPT Right prompt goes away after edit E NULL_GLOB long name (may repeat), -s to sort positional parameters.
. -H RM_STAR_SILENT
TRAPS_ASYNC Traps may run when waiting I IGNORE_BRACES
TYPESET_SILENT Silent on typeset foo -J AUTO_CD

*UNSET

Unset variables OK, treat as empty

NO_BANG_HIST

Page 6

Expansion

Basic forms of expansion in the order they order:

lexpr
alias
<(cmds)
=(cmds)
>(cmds)
$var
${var}
$(cmds)
“cmds
$(Cexpr))
X{a,b}Y
X{1..3}Y
X{08..10}Y
~user, ~dir
=cmd
pattern

History expansion:

11
{1}
!

113
1-2
'cmd
1?str
1#

Word selectors:
11:0

11:1

11:A

1:$

1:%

11:2-4
11:-4

History expansion

Alias expansion

Replaced by file with output from cmds
Same but can be reread (use for diff)
Replaced by file with input to cmds
Variable substitution

Same but protected, allows more options
Replaced by output of cmds

Older form of same, harder to nest
Arithmetic result of evaluating expr
XaY Xby (N.B. does no pattern matching)
X1Y X2y X3y

X08Y X09y X10y

User home, named dir (dir is var name)
/full/path/to/cmd

Glob file names, as above

Immediately preceding line (all of it)
Same but protected, may have args in { }
Line just referred to, default !!

Line numbered 13 (history shows nos.)
Command two before current

Last command beginning cmd

Last command containing Str

Current command line so far

Extract argument 0 (command word)
Argument numbered 1 (first cmd arg)

Also argument 1

Last command argument

Word found by ! ?str (needs correct line)
Word 2 to 4 inclusive

Words O to 4 inclusive

Zsh Reference Card
1= Words 1 to $ inclusive
11:2% Words 2 to $ inclusive
11:2- Words 2 to $-1 inclusive

Modifiers on arguments (can omit word selector):
:1:h Trailing path component removed
Only trailing path component left
File extension .ext removed

Only extension ext left

Print result but don’t execute
Quote from further substitution
Strip one level of quotes

Quote and also break at whitespace
Convert to all lower case

EHXOOT B H A

Convert to all upper case
:s/s1/s2/ Replace string s1 by s2
:8s/52/s2/ Same but global

& Use same S1 and S2 on new target

R R R RERRRRBRBEBR@R

Most modifiers work on variables (e.g ${var:h}) or in glob
qualifiers (e.g. *(=h)), the following only work there:

${var:fm} Repeat modifier m till stops changing
${var:F:N:m} Same but no more than N times
${var:wm} Apply modifer mto words of string

${var:W:sep:m} Same but words are separated by sep

Prompt expansion (with PROMPT_PERCENT, on by default); may
take a decimal number n (default 0) immediately after the %:

%! %h

Current history event number

%o # if superuser, else %

%% A single %

%) A) (use with %X(. tstr. fstr))

%% Time in 24-hour format with seconds
%/ %d $PWD; n gives trailing parts, —n leading

%C %. %C
%? Return status of last command

Deprecated alternatives, differ by default n

Version 4.2
%@ %t Time of day in am/pm format
%B (%b) Start (stop) bold face mode
%D %D{str} Date as YY-MM-DD, optional strftime spec
%E Clear to end of line
%1 Script/function line number ($ LINENO)
%3 Number of jobs as listed by jobs
%L Shell depth ($SHLVL)
%1 Login terminal without /dev or
/dev/tty
%M Full host name
%m Host name to first dot or n dots
%N Name of script, function, sourced file
%n Name of user (same as $USERNAME)
%S %S Start (stop) standout mode
%T Time of day, 24-hour format
%U %u Start (stop) underline mode (patchy support)
%V nth component of $psvar array
%W Date as middle-endian MM/DD/YY
%ow Date as DAY DD
%y Login terminal without /dev
%_ Parser state (continuation lines, debug)
%~ Like %/, %d but with tilde substitution
%{esck%} Escape sequence esc doesn’t move cursor

%X(. tstr.fstr) tstriftest X gives n, else fstr
%<str<
%>Sstr>

Truncate to n on left, Str on left if so
Truncate to n on right, Str on right if so

Test characters in %X(. tstr.fstr): ! Privileged; # uid n; ?
last status 1; _ at least n nested constructs; / at least n $PWD
elements; ~ same with ~ subst; D month is n; d day of month is n,
g effective gid is n; J at least n jobs; L $SHLVL at least n; 1 at
least 1 chars on line so far; S $SECONDS at least n; T hours is 1,
t minutes is 1; V at least n components in $psvar; w day of
week is 11 (Sunday = 0).

Page 7

Parameter (Variable) Expansion L
Basic forms: str will also be expanded; most forms work on n
words of array separately: o
${var} Substitute contents of var, no splitting 0
${+var} 1if varis set, else 0 P
${var:-str} $var if non-null, else Str q
${var-str} $var if set (even if null) else Str aq
${var:=str} $var if non-null, else Str and set var to it qqq
${var::=str} Same but always use Str qqaq

${var:?str}
${var:+str}
${var#pat}
${var##pat}
${var¥%pat}
${vark%pat}
${var:#pat}
${var/p/r}
${var//p/r}
${#var}
${rvar}
${=var}
${~var}

${${var¥%p}#q}

$ var if non-null else error, abort
strif $var is non-null

min match of pat removed from head
max match of pat removed from head
min match of pat removed from tail
max match of pat removed from tail
$var unless pat matches, then empty
One occurrence of p replaced by

All occurrences of p replaced by
Length of var in words (array) or bytes
Expand elements like brace expansion
Split words of result like lesser shells
Allow globbing, file expansion on result
Apply %p then #q to $var

Parameter flags in parentheses, immediately after left brace:

AH T O OO B> O R

Expand %s in result as in prompts

Array expand even in double quotes

Create array parameter with ${...=...}
Array index order, so 0a is reversed

Count characters for ${#var}

Capitalize result

Do parameter, comand, arith expansion
Split result to array on newlines

Join arrays with newlines between elements
o1 or 01 sort case independently

For associative array, result is keys

RZ=EMRMEHWMNLH EHEFEHEFWTNMXSESsS <9 e O

istr:

:x::sl:
:x::sl::s2:
:x::8l::82:
:str:

1exp:

Zsh Reference Card

Lower case result

on or On sort numerically

Sort into ascending order

Sort into descending order

Interpret result as parameter name, get value
Quote result with backslashes

Quote result with single quotes

Quote result with double quotes

Quote result with $" .. ."

Strip quotes from result

Output type of variable (see below)
Unique: remove duplicates after first
Upper case result

Include value in result; may have (kv)
Visible representation of special chars
Count words with ${#var}

Same but empty words count

Report parsing errors (normally ignored)
Split to words using shell grammar
Following forms recognize print \-escapes
Join words with StI between

Pad with spaces on left to width x

Same but pad with repeated s1

Same but s2 used once before any SIs
Pad on right, otherwise same as 1 forms
Split to array on occurrences of Str
With patterns, search substrings

With patterns, match expth occurrence
With patterns, include match beginning
With patterns, include match end

With patterns, include matched portion
With patterns, include length of match
With patterns, include unmatched part (rest)

parenthses (str), {str}, [str], <str>.

Version 4.2

Order of rules:

1.
2.

O N0k Ww

10.
11.
12.
13.
14.

Nested substitution: from inside out

Subscripts: ${arr[31%} extract word; ${str[2]}
extract character; ${arr[2,4]1}, ${str[4,8]1}
extract range; -1 is last word/char, =2 previous etc.
${(P)var} replaces name with value

“"$array” joins array, may use (j:str:)

Nested subscript e.g. ${${var[2,4]13}[1]}

#, %, / etc. modifications

Join if not joined and (j:str:), (F)

Splitif (s), (2), (2), =

Split if SH_WORD_SPLIT

Apply (u)

Apply (0), (0)

Apply (e)

Apply (1.str.), (x.str.)

If single word needed for context, join with $TFS[1].

Types shown with (t) have basic type scalar, array,
integer, float, assocation, then hyphen-separated words
from following list:

local
left

right_blanks
right_zeros

Parameter is local to function

Left justified with typeset -L
Right justified with typeset -R
Right justified with typeset -Z

lower Lower case forced with typeset -1
upper Upper case forced with typeset -u
readonly Read-only, typeset -r or readonly
tag Tagged as typeset -t (no special effect)
export Exported with export, typeset -x
unique Elements unique with typeset -U

hide Variable not special in func (typeset -h)

hideval
Delimeters shown as : Str': may be any pair of chars or matched special

typeset hides value (typeset -H)
Variable special to shell

Page 8

Parameters (Variables)

Parameters set by shell, T denotes special to shell (may not be
reused except by hiding with typeset -h in functions)

t!

t#
tARGC
$

+-

LE3

targv
t@

1?

10

T_
CPUTYPE
tEGID
tEUID
tERRNO
tGID
HISTCMD
HOST
tLINENO
LOGNAME
MACHTYPE
OLDPWD
tOPTARG
tOPTIND
OSTYPE
tpipestatus
tPPID
PWD
tRANDOM
tSECONDS
tSHLVL
signals
tstatus

Process ID of last background process
Number of arguments to script or function
Same

Process ID of main shell process

String of single letter options set
Positional parameters

Same

Same, but does splitting in double quotes
Status of last command

Name of shell, usually reflects functions
Last argument of previous command
Machine type (run time)

Effective GID (via system call), set if root
Effective UID (via system call), set if root
Last system error number

Real group ID (via system call), set if root
The current history line number

The host name

Line number in shell, function

Login name (exported by default)
Machine type (compile time)

Previous directory

Argument for option handled by getopts
Index of positional parameter in getopts
Operating system type (compile time)
Array giving statuses of last pipeline
Process ID of parent of main shell
Current directory

A pseudo-random number, repeating
Seconds since shell started

Depth of current shell

Array giving names of signals

Status of last command

tTRY_BLOCK_
ERROR
TTY

tTTYIDLE
tUID
tUSERNAME
VENDOR
ZSH_NAME
ZSH_VERSION

Zsh Reference Card

In always block, 1 if error in try block

Terminal associated with shell if any
Time for which terminal has been idle
Real user ID (via system call), set if root
Name for $UID, set if root

Operating system vendor (compile time)
Base name of command used to start shell
Version number of shell

Parameters used by the shell if set: : indicates arrays with
corresponding colon-separated paths e.g. cdpath and CDPATH:

ARGVO

BAUD
tcdpath :
tCOLUMNS
DIRSTACKSIZE
ENV

FCEDIT
tfignore :
tfpath :
thistchars
tHISTCHARS
HISTFILE
tHISTSIZE
tHOME

1tIFS
KEYTIMEOUT
1tLANG
tLC_ALL
tLC_COLLATE
tLC_CTYPE
tLC_MESSAGES
tLC_NUMERIC
+LC_TIME
tLINES
LISTMAX

Export to set name of external command
Baud rate: compensation for slow terminals
Directories searched for cd target

Width of screen

Maximum size of stack for pushd

File to source when started as sh or ksh
Default editor used by fc

List of suffixes ignored in file completion
Directories to search for autoloading
History, quick replace, comment chars
Same, deprecated

File for reading and writing shell history
Number of history lines kept internally
Home directory for ~ and default cd target
Characters that separate fields in words
Time to wait for rest of key seq (1/100 s)
Locale (usual variable, LC_ * override)
Locale (overrides LANG, LC_*)

Locale for sorting etc.

Locale for character handling

Locale for messages

Locale for decimal point, thousands
Locale for date and time

Height of screen

Number of completions shown w/o asking

LOGCHECK
MAIL
MAILCHECK
tmailpath :
tmanpath :
tmodule_path
tNULLCMD
tpath :
tPOSTEDIT
tPS1, PROMPT,
prompt

tPS2, PROMPT2
tPS3, PROMPT3
tPS4, PROMPT4
tpsvar :
tREADNULLCMD
REPORTTIME
REPLY

reply

tRPS1, RPROMPT

tRPS2,
RPROMPT?2
SAVEHIST
+SPROMPT
STTY
+TERM
TIMEFMT
TMOUT
TMPPREFIX
twatch :
WATCHFMT
tWORDCHARS
ZBEEP
ZDOTDIR

Version 4.2

Interval for checking $watch

Mail file to check ($mailpath overrides)
Mail check interval, secs (before prompt)
List of files to check for new mail
Directories to find manual, used by man

: Directories for zmodload to find modules

Command used if only redirection given
Command search path

Termcap strings sent to terminal after edit
Printed at start of first line of output; see
above for escape sequences for all PSs
Printed for continuation lines

Print within select loop

For tracing execution (Xtrace option)
Used with %nv in prompts

Command used when only input redir given
Show report if command takes this long (s)
Used to return a value e.g. by read

Used to return array value

Printed on right of screen for first line
Printed on right of screeen for continuation
line

Max number of history lines saved

Prompt when correcting spelling

Export with stty arguments to command
Type of terminal in use (Xterm etc.)
Format for reporting usage with time
Send STGALRM after seconds of inactivity
Path prefix for shell’s temporary files

List of users or all, notme to watch for
Format of reports for §watch

Chars considered parts of word by zle
String to replace beeps in line editor

Used for startup files instead of ~ if set

Page 9

Tests and numeric expressions

Usually used after if, while, until or with && or Il, but the status

may be useful anywhere e.g. as implicit return status for function.

File tests, e.g. [[-e file]1]:

True if £11e exists

True if £11eis block special

True if £1leis character special

True if £1ileis directory

True if £1le exists

True if £ileis a regular file (not special or directory
True if £11e has setgid bit set (mode includes 02000)
True if £11eis symbolic link

True if £11e has sticky bit set (mode includes 02000)
True if £11eis named pipe (FIFO)

True if £11eis readable by current process

True if £11e has non-zero size

True if £11e has setuid bit set (mode includes 04000)
True if £11eis writeable by current process

True if £11e executable by current process

True if £1leis symbolic link

True if £11e owned by effective UID of current
process

True if £11e has effective GID of current process
True if £ileis a socket (special communication file)
True if £11e has access time no newer than mod time

Other single argument tests, e.g. [[-n str]11]:

-n
-0
-t
-Z

True if Str has non-zero length

True if option Stris set

True if Str (number) is open file descriptor
True if Str has zero length

Multiple argument tests e.g. [[@ -eq b 1]: numerical
expressions may be quoted formulae e.g. 1%2°

-nt
-ot

True if file & is newer than file b
True if file a is older than file b

Zsh Reference Card
-ef True if @ and b refer to same file (i.e. are linked)
= True if string @ matches pattern b
== Same but more modern (and still not often used)
= True if string a does not match pattern b
< True if string a sorts before string b
> True if string a sorts after string b
-eq True if numerical expressions a and b are equal
-he True if numerical expressions a and b are not equal
-1t True if a < b numerically
-gt True if @ > b numerically
-le True if @ < b numerically
-ge True if @ = b numerically

Combining expressions: €xpr is any of the above, or the result of
any combination of the following:

(expr) Group tests

! expr True if expr is false and vice versa

exprA && exprB True if both expressions true

exprA || exprB True if either expression true

For complicated numeric tests use ((expr)) where expr is

a numeric expression: status is 1 if @€Xpr is non-zero else 0. Same

syntax used in $((expr)) substitution. Precedences of

operators from highest to lowest are:

 func(arg...), numeric constant (e.g. 3, -4, 3. 24,

-14.6e-10), var (does not require $ in front unless
some substitution e.g. ${#var} is needed, $ is error if
var is to be modified)

« (expr)

. !, ~, ++ (post- or preincrement), == (post- or
predecrement), unary +, unary —

c &

« A

<

e ¥¥% (exponentiation)

. -.':, /, %

* binary +, binary -

. >>

Version 4.2

<, <=, >, >=

==, 1=

&&

[], AA

? (ternary operator)

: (true/false separator for ternary operator)

=, +=, =, ¥=, /=, %=, ¥F=, &=, A=, | =, <<=, 5> =,
&&= Ar=, | |=

y (asin C, evaluate both sides and return right hand
side).

For functions use zmodload -i zsh/mathfunc; functions
available are as described in C math library manual:

Single floating point argument, return floating point:
acos, acosh, asin, asinh, atan (optional second
argument like C atan?2), atanh, cbrt, ceil, cos,
cosh, erf, erfc, exp, expml, fabs, floor,
gamma, jO, j1, 1gamma, log, 1og10, loglp,
logb, sin, sinh, sqrt, tan, tanh, y0, y1

Single floating point argument, return integer: 1logb
No arguments, return integer: Signgam (remember
parentheses)

Two floating point arguments, return floating point:
copysign, fmod, hypot, nextafter

One integer, one floating point argument, return floating
point: jn, yn

One floating point, one integer argument, return floating
point: 1dexp, scalb

Either integer or floating point, return same type: abs
Coerce to floating point: float

Coerce to integer: int

Optional string argument (read/write variable name),
return floating point: rand48

Example use:

zmodload -i zsh/mathfunc
float x

Cx
print $((log(x)/2))

26.4 * sqrt(2)))

Page 10

Completion

Load new completion system with:
autoload -Uz compinit

compinit

Configuration: uses styles

zstyle context style value..

where context may be a pattern matching the following form:
:completion: func: completer: cmd: arg: tag

in which:
completion

Literal string always used by completion functions

func

Name of directly called widget, blank for contextual completion

completer

Method of completion e.g. complete; see below

cmd

Name of command being completed, or special command context

arg

Only valid with standard parsing: arg-n for nth argument
option-opt-n for nth argument of option opt

tag

Indication of type of thing to be completed at this point.

Completers (T indicates modifiers existing or later completions):

t_all_matches
_approximate
_complete
_correct
_expand
_expand_alias
_history
t_ignored
t_list

_match
T_menu
t_oldlist
_prefix

Later completers add all matches
Complete with errors in part so far
Basic completion

Correct word already typed

Perform shell expansions

Expand aliases only

Complete words from shell history
Reinstate matches omitted

List on first completion, insert on second
Complete using patterns from line
Menu completion, no menu selection

Use existing list before generating new one

Complete ignoring what’s after cursor

Zsh Reference Card

Command contexts: any command name plus the special contexts: directories

-array-value-
-brace-
parameter-
-assign-
parameter-
-command-
-condition-
-default-
-equal-
-first-
-math-
-parameter-
-redirect-
-subscript-
-tilde-
-value-

Tags:

accounts
all-expansions
all-files
arguments
arrays

association-keys

bookmarks
builtins
characters
colormapids
colors
commands
contexts
corrections
cursors
default
descriptions
devices

Element in array
Parameter within ${...}

Left hand side of assignment

Word in command position
Wordin [[... 1] condition
Word with no specific completion
Word beginning with equals sign
Tried first, may set _compskip
Inside arithmetic suchas (C ...))
Parameter with bare $ in front
Word after redirection operator
Inside parameter subscript
Between ~ and first / of argument
Right hand side of assignment

For users-hosts style

When expanding, everything at once
All files rather than a subset
Command arguments

Names of array parameters

Keys of associative arrays
Bookmarks for URLs, ZFTP, etc.
Names of builtin commands
Character classes, stty characters

X colormap IDs

Names of colors, usually X

External commands, subcommands
Contexts in zstyle

Possible approximations, corrections
X cursor names

Nothing specific in certain contexts
Used in format style for matches
Device special files

directory-stack

displays
domains
expansions

file-descriptors

files

fonts

fstypes
functions
globbed-files
groups
history-words
hosts

indexes

jobs
interfaces
keymaps
keysyms
libraries
limits

Version 4.2

Directories

Entries in pushd directory stack

X displays

Network domain (DNS) names
Individual expansions instead of all
Numbers of open file descriptors
Generic file matching tag

X font names

Files system types for mount etc.
Shell functions, possibly other types
Names of files matched by pattern
UNIX groups

Words from shell history

Names of network hosts

Indexes of arrays

Shell jobs

Network interfaces (as from ifconfig)
ZLE keymaps

Names of X keysyms

Names of system libraries

System resource limits

local-directories Subdirectories of current directories

manuals
mailboxes
maps
messages
modifiers
modules
my-accounts

Names of manual pages

E-mail folders

NIS maps etc.

Used in format style for messages

X modifiers

Shell modules etc.

Own accounts, with users-hosts style

named-directories Directories named by a parameter

names
newsgroups
nicknames
options
original
other-accounts

Names of all sorts

USENET newgroups

Nicknames of NIS maps

Options to commands

Original when correcting, expanding
Other accounts with users-hosts style

Page 11

Tags continued:
packages
parameters
path-directories
paths

pods

ports
prefixes
printers
processes
processes-names
sequences
sessions
signals
strings
styles
suffixes
tags
targets
time-zones
types

urls

users
values
variant
visuals
warnings
widgets
windows
zsh-options

RPM, Debian etc. packages
Names of shell parameters
Directories under $cdpath

Used with assorted directory paths
Perl documentation

TCP, UDP prots

URL etc. prefixes

Names of print queues

PIDs

Names of processes in killall

MH sequences etc.

ZFTP sessions etc.

System signal names, HUP etc.
Assorted strings, e.g. second arg of cd
Styles in zstyle

Filename extensions

Tags used with rpm etc.

Targets inside Makefiles

Time zones with TZ parameter etc.
Assorted types of anything

Used with web addresses

Names of users

Values in lists

Used when picking variant of command

X visuals

Used in the format style for warnings
Names of zsh widgets

IDs of X windows

Shell options

Styles (1 indicates on by default):

accept-exact
tadd-space
ambiguous
assign-list

Accept exact match even if ambiguous

Add a space after expansions

Cursor after ambiguous path component

PATH-style list on assignment

Zsh Reference Card

auto-description
avoid-completer
cache-path
cache-policy
call-command
command
command-path
commands
complete
completer
tcondition
disabled
disable-stat
domains

expand

fake

fake-files
fake-parameters
file-patterns
file-sort
filter
force-list
format

tglob

tglobal
group-name
group-order
groups

hidden

hosts
hosts-ports
ignore-line
ignore-parents
ignored-patterns
insert
insert-ids

String for option descs without specific

Avoid completer with _all_matches

Path to top of various caches

Function to decide on cache rebuilding
If true, use external (slow) command
External command to call (+args)
Override PATH for commands to match
Default sys init commands (start etc.)
Complete aliases (_expand_alias)
The list of completers to try (see above)
Delay insertion of matches (_list)
Disabled aliases (_expand_alias)
If set, _cVs uses Is instead of zsh/stat
Net domains (/etc/resolv.conf)

For prefix, suffix in multiple parts

Add value: desc fake completions
dir:names add names in dir
Params to complete even if not yet set

pattern: tag generates files with tag

size, links, time, access, inode, reverse
In LDAP, attributes for filtering

Just list matches: always or number
Desc string, %d shows specific desc
Attempt glob expansion (_expand)
Global aliases (_expand_alias)
Name groups shown together by tag
Order groups shown together by tag
Unix groups, as per /etc/group
Complete but don’t list matches

List of host names, as /etc/hosts
List of hosts: ports for TCP/UDP
Don’t complete words already present
parent or pwd: ignore parent dirs

If pattern matched, don’t complete

All matches at once (_all_matches)

Convert %cmd to unambiguous PID

insert-tab
insert-
unambiguous
keep-prefix
last-prompt
list
list-colors
tlist-grouped
list-packed
list-prompt
list-rows-first
list-suffixes
list-separator
local
mail-directory
match-original
matcher
matcher-list
max-errors

Version 4.2

Insert TAB if no non-whitespace yet
Only menu complete when no prefix to
insert

Try to keep expandable prefix

Return to last editing line if possible
Control listing when history completing
Color specs like LS_COLORS

Grouped listing shown more compactly
All matches shown more compactly
Prompt when scrolling completions
Increment rows first in lists

Show ambiguous bits of multiple paths
Separates description in verbose list
host:path:dir for URLs as files
Directory for mailbox files (~/Mail)
Add * when matching (_match)
Apply match control syntax per tag
Apply match control syntax globally
Max errors allowed in approx/correct

max-matches-width Cols to reserve for matches (not desc)

menu
muttrc

numbers
old-list
old-matches
old-menu
original
packageset

path
pine-directory
ports
prefix-hidden
prefix-needed
preserve-prefix
range

tregular

Use menu completion
Alternative for ~/ . muttrc

Prefer job numbers instead of name
Retain list of matches (_oldlist)
Use old match list (_all_matches)
Keep list for meus (_oldlist)

Add original match for approx/correct
For arguments of Debian dpkg

For X colors, path to rgb. txt
Directory for PINE mailboxes

TCP/IP services (/etc/services)
Hide common prefix e.g. in options
Common prefix must by typed by user
Initial file patterns to leave alone
Range of words in history to consider
Complete regular aliases

Page 12

Styles continued:
tremote-access
remove-all-dups
select-prompt
select-scroll Lines to scroll in menu selection
separate-sections Manual sections used as part of tag
show-completer
single-ignored
sort
special-dirs
squeeze-slashes
stop
strip-comments
subst-globs-only

Control remote access for e.g. _CVS
Never complete duplicates in history
Prompt shown in menu selection

Show progress of completers as msg
Control _ignore when single match
Override sorting of matches

Add . and .. to file list
fo//bais fo/ba not fo/*/ba
Pause before looping shell history
Remove display name from email addr
Only take expansions from globbing

tsubstitute When expanding, first try subst
tsuffix Only expand path with no /suffix
tag-order Preference order for tags in context
urls Determine where URLSs are taken from
use-cache Control caching for various commands
use-compctl Use compt1-style completions
use-perl Use simpler Perl code for _make
users List of user names

users-hosts List of user@host possibilities
users-hosts-ports List of user@host: port
tverbose
word

Verbose output e.g. option descriptions
Line changes based on current word

Using _arguments for parsing standard command arguments:
Three arguments give argument/option selector, message to
output, action to take. Examples:

1:msg:_comp First arg; show msg, exec _comp
1::msg:_comp Same for optional argument
:msg:_comp Arg number inferred from position
*imsg:_comp Any of the remaining args (“rest args”)
*::msg:_comp
*:1:1:1msg:_comp

words etc. set to normal args
... set to args for this chunk

Zsh Reference Card

-foo Complete option -foo

+foo Complete option +foo

-+foo Complete -foo or +foo
*-foo Option may occur multiple times

-foo-:esg:_comp
-foo+:msg:_comp
-foo=:msg:_comp

Option has arg in same word

Option has arg in same or next word
Option arg -foo=bar or -foo bar
-foo=-:msg:_comp Option arg is ~foo=bar only
-foo[desc] Option has description desc
*:*pat:msg:_comp Complete words up to pat
*:1*pat::msg:_comp Modify words etc. for args

(-goo -boo)-foo -foo excludes -goo, -boo
(*)-foo -fo0 excludes rest args as matches
(:)-foo -foo excludes normal args
(-)-foo -fo0 excludes all options

1-foo -fo0 should not be completed
*:msg:<space> Show message but don’t complete
*:msg:(a b) Matches are listed items

*:msg:((a\:dsc))
*:msg:->string

Matches with descriptions
Array state has string if matched

*:msg:{code} Shell code generates matches
*:msg:= action Insert dummy argument first
*imsg:_comp arg Call _comp with additional args
*:msg: _comp arg Call _comp with only given arg

-a -setl -c - Common and specific completion sets
- "(setl)" -c - .. Mutually exclusive sets

-S Allow combined single letters

-SwW Same, even if option has args

e Guess options by using ——help

-- -1 pat Same, ignoring options matching pat

Examples of other utility functions:

_alternative \
Users:user:_users’\
hosts:host:_hosts

Either users or hosts (tag, description, action)

Version 4.2

_describe setdesc arrl --
Associate descriptions with completions; arrl contains
completion:description entries

_message text-msg
Don’t complete, just output text-msg

_multi_parts sep array
Complete by parts with separator sep, $array contains full
matches.

_path_files

Complete files including partial paths; _files is smart front end;
options —f all files (default), -g pat matching pat (with
_files maybe directories too), —/ directories only, -W dirs
paths in which files are found, -F files files to ignore,
overrides ignored-patterns

_sep_parts arrl sepl arr2 sep2 ..
Elements from arrl, then separator, then elements from arr2,
etc.

_values -s sep desc specl spec2 ..

Complete multiple values separated by sep; values are given by
specs, each of which is similar to _arguments option spec
without leading —

_wanted thing expl hy things’\

compadd mythingl mything2 ..
Typical way of adding completions mythingl etc. with tag
things and description my things; expl should be local
variable. Use single tag, c.f. _tags and _requested

_tags tagl tag?
_requested tag
Implement loops over different tags

_all_labels tag expl descr compcommand
_next_label tag expl descr
Implement loops over different labels for each _requested tag

mailto:user@host
mailto:user@host

Page 13

Zsh line editor (zle)

Builtin widgets, emacs binding, vicmd binding, viins binding;

€ denotes escape key:
accept-and-hold

accept-and-infer-next-history

accept-and-menu-complete
accept-line
accept-line-and-down-history
argument-base
backward-char
backward-delete-char
backward-delete-word
backward-kill-line
backward-kill-word
backward-word

beep

beginning-of-buffer-or-history

beginning-of-history
beginning-of-line
beginning-of-line-hist
capitalize-word
clear-screen
complete-word
copy-prev-word
copy-prev-shell-word
copy-region-as-kill
delete-char
delete-char-or-list
delete-word
describe-key-briefly
digit-argument
down-case-word
down-history
down-line-or-history
down-1line-or-search
emacs-backward-word
emacs-forward-word
end-of-buffer-or-history
end-of-history
end-of-line
end-of-line-hist

]

AM
A0
AB

AH

AW

AA

€c
AL

€A

€w

AD

AE

AM

AL

€

AM

AL

down

Zsh Reference Card

end-of-list
exchange-point-and-mark
execute-last-named-cmd
execute-name-cmd
expand-cmd-path
expand-history
expand-or-complete
expand-or-complete-prefix
expand-word

forward-char

forward-word

get-line
gosmacs-transpose-chars
history-beginning-search-
backward
history-beginning-search-
forward
history-incremental-search-
backward
history-incremental-search-
forward
history-search-backward
history-search-forward
infer-next-history
insert-last-word
kill-buffer

kill-line

kill-region
kill-whole-line
kill-word

list-choices

list-expand

magic-space
menu-complete
menu-expand-or-complete
neg-argument
overwrite-mode
pound-insert

push-input

push-line
push-line-or-edit

AT AT

AF

AR

AXr

AS

AXs

€p

€n

AxXAn

€_

AXAK

AK

AU

€d

€d Ad Ad
AXg AG AG

AXA0

quoted-insert
quote-line
quote-region
recursive-edit
redisplay

redo

reset-prompt
reverse-menu-complete
run-help

self-insert
self-insert-unmeta
send-break
set-mark-command
spell-word
set-local-history
transpose-chars
transpose-words
undefined-key

undo
universal-argument
up-case-word
up-history
up-line-or-history
up-line-or-search
vi-add-eol
vi-add-next
vi-backward-blank-word
vi-backward-char
vi-backward-delete-char
vi-backward-kill-word
vi-backward-word
vi-beginning-of-line
vi-caps-lock-panic
vi-change
vi-change-eol
vi-change-whole-line
vi-cmd-mode

vi-delete
vi-delete-char

vi-digit-or-beginning-of-line

vi-down-line-or-history

Version 4.2
AV
€
€,!
AR AR
)
€AM
AG
A@
£
AT
€t
A—
]
Ap
Ap k up
A
a
B
h AHleft
X AH
AW
b
C
C
S
AXV €
d
X
0
+

Page 14

Builtin widgets cont.:
vi-end-of-line
vi-fetch-history
vi-find-next-char
vi-find-next-char-skip
vi-find-prev-char
vi-find-prev-char-skip
vi-first-non-blank
vi-forward-blank-word
vi-forward-blank-word-end
vi-forward-char
vi-forward-word
vi-forward-word-end
vi-goto-column
vi-goto-mark
vi-goto-mark-line
vi-history-search-backward
vi-history-search-forward
vi-indent

vi-insert
vi-insert-bol

vi-join

vi-kill-eol
vi-kill-line
vi-match-bracket
vi-open-line-above
vi-open-line-below
vi-oper-swap-case
vi-pound-insert
vi-put-after
vi-put-before
vi-quoted-insert
vi-repeat-change
vi-repeat-find
vi-repeat-search
vi-replace
vi-replace-chars
vi-rev-repeat-find
vi-rev-repeat-search
vi-set-buffer
vi-set-mark

AXAF £

€|

i — 0 S M= >MHMTe

AXAT

O MKV NN

AXAB%

rght

AU

AV

Zsh Reference Card
vi-substitute]
vi-swap-case &
vi-undo-change u
vi-unindent <
vi-up-line-or-history =
vi-yank y
vi-yank-eol Y
vi-yank-whole-line
what-cursor-position AX=
where-is
which-command €
yank Ay
yank-pop 2
Special parameters inside user-defined widgets; 1 indicates
readonly:

BUFFER Entire editing buffer

BUFFERLINES Number of screen lines for full buffer
+CONTEXT start, cont, select, vared
CURSOR Index of cursor position into $BUFFER
CUTBUFFER Last item to be killed

HISTNO Currently history line being retrieved
tKEYMAP Currently selected keymap

tKEYS Keys typed to invoke current widget
killring Array of previously killed items, can resize
tLASTSEARCH Last search string in interactive search
tLASTWIDGET Last widget to be executed

LBUFFER Part of buffer left of cursor

MARK Index of mark position into $BUFFER
NUMERIC Numeric argument passed with widget
tPENDING Number of bytes still to be read
tPREBUFFER Input already read (no longer being edited)
PREDISPLAY Text to display before editable buffer
POSTDISPLAY Text to display after editable buffer
RBUFFER Part of buffer starting from cursor
WIDGET Name of widget being executed
WIDGETFUNC Name of function implementing §WIDGET
WIDGETSTYLE Implementation style of completion widget

Version 4.2
Special characters in bindkey strings:
\a Bell (alarm)
\b Backspace
\e, \E Escape
\f Form feed
\n Newline
\r Carriage return
\t Tab (horizontal)
\Vv Tab (vertical)
\nnn Octal character e.g \081
\xnn Hexadecimal character eg. \x41

\Mx, \M-x Set 8" bit in character

\Cx, \C-x Control character e.g. \C-a

AX Control character e.g. Aa (same as AA)
A? Delete

\\ Single backslash

Keymaps:

emacs Like Emacs editor

viins Like Vi editor in insert mode

vicmd Like Vi editor in command mode
.safe Emergency keymap, not modifiable

